Đăng ký:
Đăng Nhận xét (Atom)
tR
Câu 41:
Gọi số bạn được chia là a ta có (a thuộc tập n )
126 = 2.3.7; 198 = 2.32.11; 144 = 24.32
UCLN là 2. 3 = 6 => có 6 bạn
Vậy mỗi bạn có
126: 6 = 21 bóng đỏ
198: 6 = 33 bóng xanh
144: 6 = 24 bóng vàng
Gọi số thứ nhất là n, số thứ hai là n+1, ƯC (n, n+1)=a
Ta có: n chia hết cho a (1)
n+1 chia hết cho a (2)
Từ (1) và (2) ta được:
n+1-n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC (n, n+1) = 1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
Câu 42:
Gọi số thứ nhất là n, số thứ hai là n + 1, ƯC (n, n + 1) = a
Ta có: n chia hết cho a (1)
n+1 chia hết cho a (2)
Từ (1) và (2) ta được:
n + 1 - n chia hết cho a
=> 1 chia hết cho a
=> a = 1
=> ƯC (n, n+1) = 1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
Đặt 2 số tự nhiên đó là: a = 12.m và b = 12.n
với UCLN (m; n) = 1
ta có: a + b = 168 => 12.m + 12.n = 168
=> (m + n).12 = 168 => m + n = 14
Câu 43:
Đặt 2 số tự nhiên đó là: a = 12.m và b = 12.n
với UCLN (m; n) = 1
ta có: a + b = 168 => 12.m + 12.n = 168
=> (m + n).12 = 168 => m + n = 14
Gọi 2 số tự nhiên là a và b
Có a – b = 168
Hay ta có a = 56m, b = 56n (m, n nguyên tố cùng nhau)
Có 56m – 56n = 168 => 56.(m - n) = 168 hay m – n = 3
Lại có 600 < 56.m và 56.n < 800 => 10 < m, n < 15
Vậy m = 14, n = 11
Hai số cần tìm là 784 và 616
Câu 44:
Gọi 2 số tự nhiên là a và b
Có a – b = 168
Hay ta có a = 56m, b = 56n (m, n nguyên tố cùng nhau)
Có 56m – 56n = 168 => 56.(m - n) = 168 hay m – n = 3
Lại có 600 < 56.m và 56.n < 800 => 10 < m, n < 15
Vậy m = 14, n = 11
Hai số cần tìm là 784 và 616
Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d
4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d
(12n+4 )- (12n+3) chia hết cho d
1 chia hết cho d
vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau
Câu 45:
Ta có:3n+ 1 chia hết cho d => 4(3n+ 1) chia hết cho d => 12n+4 d
4n+ 1 chia hết cho d => 3(3n+ 1) chia hết cho d => 12n+3 d
(12n+ 4 )- (12n+ 3) chia hết cho d
1 chia hết cho d
vậy 3n+ 1 và 4n+ 1 là hai số nguyên tố cùng nhau
Gọi ƯCLN(4n+3,5n+2) = d(d ∈ ℕ )
⇒4n+3 ⋮d; 5n+2 ⋮d
⇒ 5.(4n+3)⋮d; 4.(5n+2)⋮d
⇒20n+15 ⋮d; 20n+8 ⋮d
⇒(20n+15-20n-8)⋮d
⇒7 ⋮d
Do đó d ∈ Ư(7)={1;7}
Mà đầu bài cho là (4n+3,5n+2) ≠ 1
⇒d=7
Vậy ƯCLN(4n+3,5n+2) = 7
Câu 46:
Gọi ƯCLN(4n+3, 5n+2) = d(d ∈ ℕ )
⇒ 4n+ 3 ⋮d; 5n+ 2 ⋮d
⇒ 5.(4n+ 3)⋮d; 4.(5n+ 2)⋮d
⇒ 20n+15 ⋮d; 20n+ 8 ⋮d
⇒ (20n+ 15- 20n- 8)⋮d
⇒ 7 ⋮d
Do đó d ∈ Ư(7)={1;7}
Mà đầu bài cho là (4n+3, 5n+2) ≠ 1
⇒d = 7
Vậy ƯCLN(4n+3, 5n+2) = 7
Xếp thành hàng 12, 16, 18 hàng đều thừa 2 hs
=> x-2 thuộc BC (12; 16; 18) và 1200 < x-2 < 1400
BCNN (12; 16; 18)
12= 22.3; 16= 24; 18= 2.32
BCNN (12; 16; 18) = 24.32 = 144
BC (12; 16; 18) = B(144) = {0; 144; 288; 432;......; 1152; 1296; 1440;….}
mà 1200<x-2<1400
nên x-2=1296
x= 1296 + 2 = 1298
Câu 47:
Xếp thành hàng 12, 16, 18 hàng đều thừa 2 hs
=> x-2 thuộc BC (12; 16; 18) và 1200 < x-2 < 1400
BCNN (12; 16; 18)
12= 22.3; 16= 24; 18= 2.32
BCNN (12; 16; 18) = 24.32 = 144
BC (12; 16; 18) = B(144) = {0; 144; 288; 432;......; 1152; 1296; 1440;….}
mà 1200<x-2<1400
nên x-2=1296
x= 1296 + 2 = 1298
Gọi số cam đó là a.
a chia 8 dư 7; chia 9 dư 8; chia 12 dư 11
=> a + 1 chia hết cho 8 ; 9 ; 12, hay a + 1 thuộc BC (8; 9; 12)
Tìm BCNN tính ra được a + 1 = 216 => a = 215
Câu 48:
Gọi số cam đó là a.
a chia 8 dư 7; chia 9 dư 8; chia 12 dư 11
=> a + 1 chia hết cho 8 ; 9 ; 12, hay a + 1 thuộc BC (8; 9; 12)
Tìm BCNN tính ra được a + 1 = 216 => a = 215
Gọi năm cần tìm là a.
Vì a thuộc thế kỉ X nên 901<=a<=1000
Vì a chia 5 dư 3 => a+2 chia hết cho 5; a chia 47 dư 45 => a+2 chia hết cho 47
mà 5 ,47 nguyên tố
=> a+2 chia hết cho 235
mà 903<=a+2<=1002
=> a+2=940
=> a=938 (chia hết cho 2)
Vậy năm đó là năm 938
Câu 49:
Gọi năm cần tìm là a.
Vì a thuộc thế kỉ X nên 901<=a<=1000
Vì a chia 5 dư 3 => a+2 chia hết cho 5; a chia 47 dư 45 => a+2 chia hết cho 47
mà 5 ,47 nguyên tố
=> a+2 chia hết cho 235
mà 903<=a+2<=1002
=> a+2=940
=> a=938 (chia hết cho 2)
Vậy năm đó là năm 938
Ta có: a.b = BCNN (a, b).ƯCLN (a, b)
=> a . b = 1440 x 240 = 345600
Vì ƯCLN (a, b) = 240 nên a = 240. m, b = 240. n và ( m, n ) = 1
Mà a.b = 345600 nên 240.m.240. n = 345600 => m . n = 6 và m, n nguyên tố cùng nhau.
Học sinh tiếp tục giải để tìm m, n sau đó tìm a, b
Câu 50:
Ta có: a.b = BCNN (a, b).ƯCLN (a, b)
=> a . b = 1440 x 240 = 345600
Vì ƯCLN (a, b) = 240 nên a = 240. m, b = 240. n và ( m, n ) = 1
Mà a.b = 345600 nên 240.m.240. n = 345600 => m . n = 6 và m, n nguyên tố cùng nhau.
Học sinh tiếp tục giải để tìm m, n sau đó tìm a, b
0 Comments:
Đăng nhận xét